Dizilim hataları

Kristal yapılarda yer alan düzlemler, yapıların simetrisi nedeniyle birbirini takip eden, periyodik bir düzende sıralanıyorlar. Bu düzlemlerinin periyodik dizilimiyle ilgili hataları, adından da anlaşılacağı üzere, dizilim hatası (İngilizce: stacking fault) olarak adlandırıyoruz.


mühendishane video
Not: Bu içeriği genişletilmiş haliyle video olarak da izleyebilirsiniz. Dersler başlığı altındaki Temel Malzeme Dersleri video listesine göz atmak için resme tıklayın.


Dizilim hataları, en yaygın bilinen şekliyle yüzey merkezli kübik (YMK) yapının sıkı paketlenmiş, altıgen simetriye sahip düzlemlerinin diziliminde karşımıza çıkıyor. Bu nedenle biz de bu hata türünü YMK yapıda gözlemlediğimiz şekliyle tarif edeceğiz.

YMK yapıda yer alan sıkı paketlenmiş düzlem ve bu düzlemin altıgen yapısından başlayarak konuya giriş yapalım. Aşağıdaki resimde (a) YMK yapıya ait birim hücre (yüzey ve köşe atomları aynı olmasına rağmen kolaylık sağlaması açısından farklı renkte gösteriliyor); (b) çok sayıda atomun bir araya gelmesiyle ortaya çıkan dizilim; (c) sıkı paketlenmiş (111) düzleminden alınmış bir kesit; ve (d) bu düzlemdeki altıgen simetriye sahip atom dizilimi gösteriliyor.

Altıgen simetriye sahip bu atom düzeni, adından da tahmin edebileceğiniz üzere, hegzagonal sıkı paket (HSP) yapının tabanında da karşımıza çıkıyor. Bu da, YMK yapının (111) düzlemiyle HSP yapının (0001) düzleminin, yani tabanının, aynı atom düzenine sahip olduğu anlamına geliyor. YMK ile HSP yapıların farkı, bu yapılardaki sıkı paketlenmiş bu düzlemlere paralel sıralanan diğer düzlemlerin diziliminden kaynaklanıyor. Oluşabilecek farklı dizilimleri aşağıdaki resimler üzerinde inceleyelim.

Öncelikle, yukarıda gösterdiğimiz YMK yapının (111) düzlemindeki atom dizilimine sahip bir düzlem düşünelim (aşağıdaki resimde: (a)). Düzlemlerin dizilimiyle ilgili bir hatadan bahsedeceğimize göre, bu düzlemdeki atomların konumlarını bir şekilde adlandırmamız lazım. Bu düzlemdeki atomların konumlarını tarif etmek için bu düzleme A düzlemi adını verelim. İkinci adımda, bu düzlemde sıralanan atomların arasında kalan çukurlara denk gelecek şekilde, aynı dizilime sahip bir düzlem daha yerleştirelim (aşağıdaki resimde: (b)). Dikkat ederseniz, bu düzlemdeki atomların dizilim düzeni A düzlemiyle aynı olmasına rağmen, konumları A düzlemindeki atomlardan farklı; yani, aynı hizada değiller. Bu nedenle bu düzleme de B düzlemi adını verelim.

Üst üste dizdiğimiz bu iki düzlemin sırasını alttan üste doğru tarif etmek istersek, altta A düzlemi, üstte de B düzlemi olduğu için bu sıralamayı AB şeklinde gösterebiliriz. AB sırasına sahip bu düzlem dizilimini hem YMK, hem de HSP yapıda gözlemliyoruz. Bu iki yapıyı birbirinden ayıran ise, üçüncü sıraya gelen düzlemdeki atomların konumu. Üçüncü düzlem iki ayrı şekilde karşımıza çıkabiliyor.

Üçüncü konuma denk gelen atomlar A düzlemiyle aynı konuma, ya da C düzlemi adını vereceğimiz farklı bir konuma yerleşebiliyorlar (yukarıdaki resimde: (c)). Üçüncü sıraya gelen düzlemin hangi konumu tercih edeceği, oluşacak kristal yapıyı belirliyor: atomlar ABCABC dizilimiyle sıralandıklarında YMK yapı oluşuyor; ABABAB dizilimiyle sıralandıklarında ise, HSP yapı ortaya çıkıyor. Dolayısıyla YMK yapıyla HSP yapının, sıkı paketlenmiş düzlemlerin dizilimleriyle birbirlerinden ayrıldıklarını söyleyebiliriz.

Şimdi tekrar esas konumuza, yani dizilim hatalarına geri dönelim. Sıkı paketlenmiş bu düzlemler, YMK yapıyı ortaya çıkaracak şekilde ABCABC sıralamasıyla dizilirken, zaman zaman bir ya da birkaç sıra atomun, olmaları gereken konumdan kayarak kısa bir ABABAB dizilimi sergilediklerini gözlemleyebiliyoruz. Düzlem üzerindeki atomların konumlarındaki kayma nedeniyle oluşan bu hatalara dizilim hatası adını veriyoruz.

Bazı kaynaklarda dizilim hatalarından YMK yapı içerisinde HSP diziliminin ortaya çıkması şeklinde bahsedildiğini görebilirsiniz. Bu ifade, yukarıdaki anlatımdan da anlaşılacağı üzere, kübik kristal içerisinde altıgen prizma simetrisinde dizilmiş atom kümeleri göreceğimiz anlamına gelmiyor. Bu ifadeyle, ABCABC dizilimiyle (yani YMK) sıralanan sıkı paket düzlemlerin sıralamasında bir kesilme olması nedeniyle, bir ya da iki katmanlık  ABABAB düzlem sırasının (yani HSP) ortaya çıkacağı kastediliyor .


Devamı:

Bir Cevap Yazın

Aşağıya bilgilerinizi girin veya oturum açmak için bir simgeye tıklayın:

WordPress.com Logosu

WordPress.com hesabınızı kullanarak yorum yapıyorsunuz. Çıkış  Yap /  Değiştir )

Google fotoğrafı

Google hesabınızı kullanarak yorum yapıyorsunuz. Çıkış  Yap /  Değiştir )

Twitter resmi

Twitter hesabınızı kullanarak yorum yapıyorsunuz. Çıkış  Yap /  Değiştir )

Facebook fotoğrafı

Facebook hesabınızı kullanarak yorum yapıyorsunuz. Çıkış  Yap /  Değiştir )

Connecting to %s